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Abstract

The paper proposes a novel statistical methodology for backtesting Value-at-Risk (VaR)
models. The technique relies on the Ljung-Box test for the size of the hits, computed
as the distance between the observed returns and the one step ahead forecasted VaR,
when a violation occurs. The test determines whether or not the size of the hits are
independent and identically distributed; whether or not the model shows lack of fit.
The empirical analysis is applied to the S&P500 index, considering the levels of the
VaR at 95% and 99%.
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1. Introduction

The Value-at-Risk (VaR) which measures the quantile of the predicted distribution of gains
and losses over a target horizon, constitutes the most popular measure of risk. Consequently,
regulatory authorities need to put adequate ex-post techniques, validating or not the amount
of risk taken by financial institutions. The standard assessment method of VaR consists in
backtesting procedures. Jorion (2007) defines a backtesting procedure as a formal statistical
framework that consists in verifying if actual trading losses are in line with projected losses.
This procedure involves a comparison of model-generated VaR forecasts with actual returns
and generally relies on testing over VaR violations (also called the Hits). A hit is said to
occur when ex-post portfolio returns are lower than VaR forecasts.

Christoffersen (1998) points out that the puzzle of determining the accuracy of a VaR
model can be reduced to the problem of determining whether the hit sequence satisfies two
properties, namely the unconditional coverage property and the independence property. The
hypothesis of unconditional coverage means that the expected frequency of observed viola-
tions is equal to a%. If the unconditional probability of violation is significantly higher
than a%, it means that VaR model understates the portfolio’s actual level of risk. The
independence property means that if the model of VaR calculation is valid, then violations
must be distributed independently. Campbell (2007) points out how the unconditional cov-
erage property places a restriction on how often VaR violations may occur; whereas, the
independence property restricts the ways in which these violations may occur.

In line with the conventional wisdom, this paper proposes a novel statistical procedure for
backtesting VaR models. The technique relies on the Ljung-Box test for the size of the hits,
computed as the distance between the observed returns and the one step ahead forecasted
VaR, when a violation occurs. The test determines whether or not the size of the hits are
independent and identically distributed; whether or not the autocorrelations for the size of
the hits are non zero. The null hypothesis is the data are independently distributed. If the

p-value of the test is greater than a certain threshold, it means that the model does not show



lack of fit. The analysis is applied to the Standard & Poor’s 500 index, considering the level
of the VaR at 95% and 99%.

The paper is organized as follows. In section 2, it is reported an overview of the litera-
ture. Section 3 presents the statistical methodology for backtesting VaR models. Section 4
discusses the data and reports the descriptive statistics that supports the empirical analysis.
In section 5, there is a discussion of the econometric models for one step ahead forecasting
the VaR. Section 6 realizes an empirical application using the daily data of the S&P500

index. Finally, the last section concludes.

2. An Overview of Literature

Campbell (2007) proposes a survey of various tests on independence and unconditional cov-
erage hypotheses for backtesting VaR models. Escanciano and Olmo (2010) show how the
standard unconditional and independence backtesting procedures to assess VaR models in
out-of-sample composite environments can be misleading. These tests do not consider the
impact of estimation risk and therefore may use wrong critical values to assess market risk.

Another streamline of the literature uses the statistical properties of the duration between
two consecutive hits. The idea is that if the one-period ahead VaR is correctly specified
for a coverage rate «, the durations between two consecutive hits must have a geometric
distribution with a success probability equal to a%. Christoffersen and Pelletier (2004)
propose a test of independence. The idea behind the duration-based backtesting test consists
in specifying a duration distribution that nests the geometric distribution and allows for
duration dependence, so that the independence hypothesis can be tested by means of simple
likelihood ratio (LR) tests. As pointed out by Haas (2007), this backtesting procedure sounds

very interesting. It must be note that one have to specify a particular distribution under



the alternative hypothesis. Pelletier and Wei (2016) propose the geometric-VaR test which
utilizes the duration between the violations of VaR as well as the value of VaR.

Candelon et al. (2011) propose a new duration-based backtesting procedure for VaR
forecasts. This analysis also relies on the GMM test framework proposed by Bontemps
(2006) to test for the distributional assumption (i.e. the geometric distribution) and it is
applied to the case of the VaR forecasts validity. The statistical technique tackles most of
the drawbacks usually associated to duration based back-testing procedures. Lopez (1999)
proposes the loss function evaluation method that is not a hypothesis-testing framework, but

rather assigns to VaR estimates a numerical score that reflects specific regulatory concerns.

3. The methodology

As noted by the Basle Committee on Banking Supervision (1996), the magnitude as well
as the number of exceptions, computed as the distance between the observed returns ()
and the one step ahead forecasted VaR, at the confidence level 0 < o < 1 (VaRY) when a
violation occurs, are a matter of regulatory concern.

This section proposes the Ljung-Box test (Ljung and Box 1978) for accepting or rejecting

the VaR models, based on the size of the hits (S) at time ¢:

re — VaRy re < VaR{

0 ry > VaRy

The test determines whether or not the size of the hits are independent and identically dis-
tributed; whether or not the autocorrelations for the size of the hits are non zero. Therefore,
the null hypothesis (Hy) is the data are independently distributed; with, the alternative
hypothesis (H,) being the data are not independently distributed. The null hypothesis also

implies that the model does not show lack of fit.



The test statistic is:
h A2
K

Q=n(n+2) Y 2)

k=1

where n is the sample size, pp is the sample autocorrelation at lag k£ of the quantity
S;, and h is the number of lags being tested. Under the null hypothesis, the statistic )
asymptotically follows a X%h)‘ For significance level 9, the critical region for rejection of the

hypothesis of randomness is:

Q> X%—S,h (3)

where, X%—&h is the (1 — §) — quantile of the chi-squared distribution with A degrees of
freedom. We would like to fail to reject the null hypothesis. That is, we would like to see
the p-value of the test be greater than a certain threshold, because this means the size of
the hits are independent and identically distributed and the VaR model does not show lack
of fit.

4. Data and descriptive statistics

The empirical analysis is applied to the close prices of the Standard & Poor’s 500 (S& P500)
index, measured in US Dollars. The prices are transformed into returns by taking logarithmic
differences of the closing daily prices. The analysis relies on daily data for the period from
January 1st, 1928 through April 19th, 2023. Therefore, the sample covers the recent years
of turmoil. The entire data period is divided into an estimation window (January 1st, 1928
to December 31, 2008) and a test window (January 1st, 2000 to April 19th, 2023). Thus,
the empirical analysis works with 23938 observations and generates 5861 out-of-sample VaR

forecasts, at 95% and 99%.

[Please Insert Table 1 around here]
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Table 1 reports the descriptive statistics for the close prices of the S&P 500 index. From
January 1st, 1928 to April 19th, 2023, the S&P 500 index respectively reports an average
value of 580.735 USD and a median value of 101.260 USD, reaching a maximum value of
4796.560 USD on December 31st, 2021. In particular, during the estimation window, the
unconditional mean for the S&P 500 is equal to 19.937 with a standard deviation of 1.896
and a level of skewness equals to 0.450; whereas, during the test window, the unconditional
mean for the close prices of the S&P 500 index is equal to 1900.885, with a standard deviation
of 988.958.

On October 19th, 1987, the S&P 500 registers its largest daily percentage loss, falling
20.47 percent. The one-day crash is known as "Black Monday”. Despite the losses, the S&P
500 still closed positive for the year. The S&P 500 index reaches an all-time intraday high of
1552.87 USD, on March 24th, 2000, during the dot-com bubble. On October 9th, 2007, the
index closes at a record high of 1565.15 USD, the highest close prior to the financial crisis of
2007-2008. Two days later, the index hits an intraday record high of 1576.09 USD. It did not
regain this closing level until March 28th, 2013. On February 5th, 2018, after months of low
volatility, the S&P 500 registers a new largest daily point loss of 113.19 points, equivalent
to more than 4%. Three days later, the index suffered another heavy loss of nearly the same
amount.

On October 13th, 2008, the S&P 500 marks its best daily percentage gain, rising 11.58
percent. It also registers its then-largest single-day point increase of 104.13 points. While on
pace for the worst December performance since the Great Depression, the S&P 500 registers
a new largest daily point gain of 116.60 points on December 26th, 2018, which translates to
roughly 5% on the index. On February 19th, 2020, the S&P 500 index reached its highest
point in the bull market that started from the low point on March 9th, 2009, closing at
3386.15 USD.

The S&P 500 index suffered its worst daily decline since 1987’s Black Monday, falling 9.5

percent on March 16th, 2020, as a result of anxiety about the coronavirus pandemic. The



decline of more than 20% since its peak, only 16 trading days earlier, signaled the start of a
bear market closing at 2,480.64 USD. On August 18th, 2020, the S&P 500 index closed at a
record high of 3389.78 USD amid the ongoing COVID-19 pandemic in the United States.

5. The econometric models

This section proposes the econometric models for one step ahead forecasting the VaR, at the
significance levels of 95% and 99%. The natural logarithmic variations of the close prices, at

time ¢t can be computed in the following way:

Ap; = (M) ~ log (ﬁ) =c(1)+c(2) Api_y + &4, (4)
Pi—1 Pi—1

where, ¢ (1) is the coefficient of the mean equation that describes the evolution of the
daily close prices, at time ¢; c¢(2) is the autoregressive component of the mean equation
and ¢ is the residual component at time ¢. This section proposes four different specifications
of the conditional variance process (0?) at time ¢, with normal and student t distributions
of the errors. Therefore, we have the following models: GARCH(1,1), GJR-GARCH(1,1),
EGARCH(1,1) and PARCH(1,1).

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model was

introduced by Bollerslev (1986) and relies on the following specification:
GARCH (1,1): o} =c(3)+c(4)-&f_, +¢(5)- 074, (5)

where, ¢(3) is the long term component of the conditional variance; c(4) depicts the
influence of the squared residuals at time t — 1 and ¢(5) depicts the persistence of the
conditional variance.

The second model is the GJR-GARCH by Glosten et al. (1993). The generalized speci-

fication for the conditional variance is given by:



GJR—GARCH (1,1): o2 =c(3)+c(4) e, +c(5) e’ , (g1 <0)+c(6)-02,. (6)

In this model, good news and bad news (¢, < 0) have differential effects on the con-
ditional variance. Good news has an impact of ¢(4), while bad news has an impact of
c(4)+c(5). If ¢(5) > 0, bad news increases volatility, and we say that there is a leverage ef-
fect. If ¢ (5) # 0, the news impact is asymmetric. The coefficient ¢ (6) depicts the persistence
of the conditional variance.

The third model is the Exponential GARCH proposed by Nelson (1991). The specification

for the conditional variance is:

EGARCH (1,1) : log (0}) = c(3) +c(4) - abs ( ciot ) +c(5)- el S c(6)-log (o7_1) . (7)
Utg—l \/a

Note that the left-hand side is the logarithm of the conditional variance. This implies that
the leverage effect is exponential, rather than quadratic and that forecasts of the conditional
variance are guaranteed to be non-negative. The presence of leverage effects can be tested
by the hypothesis that ¢ (5) < 0. The impact is asymmetric if ¢ (5) # 0. Since log o may be
negative, there are no sign restrictions for the parameters. The coefficient ¢ (6) depicts the
persistence of the conditional variance.

Taylor (1986) and Schwert (1989) introduced the standard deviation GARCH model,
where the standard deviation is modeled rather than the variance. This model, along with
several other models, is generalized in Ding et al. (1993), with the Power ARCH specification.
In the Power ARCH model, the power parameter of the standard deviation can be estimated

rather than imposed. Therefore, the following expression is derived.



o(7) e(7)
PARCH (1,1) : ( a§> :c(3)+c(4)-(abs(st1)—0(5)-5t1)C(7)+c(6)-<\/0t21> , (8)

where ¢ (7) > 0, and the absolute value of ¢ (5) is smaller or equal than 1. The coefficient

¢ (6) depicts the persistence of the conditional variance.

6. Empirical Results

The estimation results rely on the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm
(Roger 1987) that is an iterative method for solving unconstrained nonlinear optimization
problems. It belongs to quasi-Newton methods and seeks a stationary point of a function,
reachable when the gradient is zero. The optimization algorithm begins at an initial estimate
for the optimal values and proceeds iteratively to get better estimates at each stage, till
when there is a convergence for finding the solutions. For simplicity, the maximum number
of iterations is fixed to n. 5,000 and the convergence rate to 1le-06. The step method is
based on the Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt 1963) that is
more robust than the Gauss-Newton algorithm, since it allows to derive solutions even if
the algorithm starts very far o from the final minimum. In cases with multiple minima, the
algorithm converges to the global minimum only if the initial guess is already somewhat
close to the final solution. The estimation procedure also accommodates the Huber-White
estimator (Huber 1967; White 1980), that allows to derive the variance/covariance matrix

considering the heteroscedasticity of the residuals.

|[Please Insert Table 2 around here]

Table 2 contains the estimation results across the specifications of the conditional vari-

ance process: (i) GARCH(1,1) with normal errors; (ii) GARCH(1,1) with t-student er-
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rors; (iii) GJR-GARCH(1,1) with normal errors; (iv) GJR-GARCH(1,1) with t-student er-
rors; (v) EGARCH(1,1) with normal errors; (vi) EGARCH(1,1) with t-student errors; (vii)
PARCH(1,1) with normal errors; (viii) PARCH(1,1) with t-student errors. The mean equa-
tion follows an autoregressive process of order 1 with a constant. The estimated coefficients
are related to the entire period from January 1st 1928 to April 19th, 2023.

All the coefficients of the models are statistically significant at the level of 1%. The esti-
mated coeflicient ¢ (2) that depicts the autoregressive component of the mean equation ranges
from 0.06, for the AR(1)-EGARCH(1,1) with t-student errors, to 0.071 for the AR(1)-GJR-
GARCH(1,1) with normal errors. Across specifications, the estimated coefficients that depict
the persistence of the conditional variance range from 0.896, for the AR(1)-GARCH(1,1) with
normal errors, to 0.988 for the AR(1)-EGARCH(1,1) with t-student errors.

|Please Insert Figure 1 and Figure 2 around here|

The coefficients that determine the conditional volatility are also estimated for the period
between January 1st, 1928 and December 31th, 1928 and taken into consideration for the
period from January 1st, 2000 to April 19th, 2023!, with the aim to compute the one step
ahead forecasted VaR. Figure 1 reports its evolution at the significance levels of 95% and 99%),
based on the AR(1)-GARCH(1,1) process with normal (Figure 1.1) and t-student (Figure
1.2) errors. The mean and the median of the one step ahead forecasted VaR at 95% with
normal and t-student errors are respectively equal to 0.020 and 0.018; whereas, the mean
and the median of the one step ahead forecasted VaR at 99% with normal and t-student
errors are respectively equal to 0.024 and 0.021.

The evolution of the one step ahead forecasted VaR at the significance levels of 95% and
99%, based on the AR(1)-GJR-GARCH(1,1) model, is reported in Figure 2. The mean and

the median for the one step ahead forecasted VaR at 95% with normal and t-student errors

!The one-step-ahead forecast is a technique used in time series forecasting. It is used to evaluate how
well a model would have done if you were forecasting for one day ahead
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are respectively equal to 0.019 and 0.017; whereas, the mean and the median for the one
step ahead forecasted VaR at 99%, with normal and t-student errors, are respectively equal

to 0.022 and 0.020.

[Please Insert Figure 3 and Figure 4 around here]

The evolution for the one step ahead forecasted VaR at the significance levels of 95%
and 99% is also respectively shown for the AR(1)-EGARCH(1,1) model (Figure 3) and the
AR(1)-PARCH(1,1) process (Figure 4).

6.1 The Size Of The Hits And The Test Of Hypothesis

The size of the hits is computed as the distance between the observed returns of the S&P500
and the one step ahead forecasted Value at Risk (VaR) when a violation occurs (see equality
n. 1), considering the levels of significance at 95% and 99%. Table 3 reports the descriptive

statistics for the size of the hits across the models.

|Please Insert Table 3 around here]

Considering the level of confidence for the forecasted VaR at 95%, the AR(1)-GARCH(1,1)
model reports a mean for the size of the hits equals to -0.020 and a standard deviation of 0.015
(for normal errors) and 0.014 (for t-student errors). The mean decreases to -0.019 for the rest
of the models with a standard deviation equals to 0.013 for the AR(1)-GJR-GARCH(1,1)
model and 0.012 for the AR(1)-EGARCH(1,1) and AR(1)-PARCH(1,1) models.

The descriptive statistics for the size of the hits are also reported for the level of con-

fidence of the VaR at 99%. The mean of the size of the hits is equal to -0.024 with a
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standard deviation equals to 0.016 and 0.015 for the AR(1)-GARCH(1,1) model. The mean
decreases to -0.023 for the AR(1)-EGARCH(1,1) and for the AR(1)-PARCH(1,1) models
with a standard deviation equals to 0.013.

The size of the hits allows to evaluate the Ljung Box test. It determines whether or
not the size of the hits are independent and identically distributed; whether or not the
autocorrelations for the size of the hits are non zero.We would like to fail to reject the null
hypothesis. That is, we would like to see the p-value of the test be greater than 0.05, because
this means the size of the hits are independent and identically distributed and the VaR model

does not show lack of fit.

|Please Insert Table 4 around here]

Table 4 reports the autocorrelation, the partial autocorrelation for the first ten lags of the
Ljung Box test and the related p-values, across specifications of the conditional processes.
The results show that the VaR models reject the null hypothesis, since the p-value of the
test is smaller than 0.05, implying that the size of the hits are serially correlated and the

VaR models constructed on the conditional volatility processes show lack of fit.

7. Conclusion

This paper proposes a novel methodology for backtesting Value-at-Risk (VaR) models, rely-
ing on the Ljung-Box test to evaluate the independence and identically distributed nature
for the size of the hits. The empirical application, focused on the S&P 500 index, explores
VaR models at 95% and 99% confidence levels across different specifications of conditional
variance processes, including GARCH, GJR-GARCH, EGARCH, and PARCH models. The
results indicate that, while the tested models show statistical significance across the various

parameters, the size of the hits often exhibits serial correlation. This suggests that the VaR
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models, despite being robust in forecasting, demonstrate a lack of fit in capturing the com-
plete distributional dynamics of returns. The persistence of this issue across the different
model typologies emphasizes the need for improved statistical methodologies in the area of
VaR backtesting.

The methodology proposed in this paper suggests an alternative and a rigorous frame-
work for backtesting VaR models, offering a formal tool in order to identify limitations in
their predictive accuracy. This approach could help both regulatory bodies and financial
institutions to refine their risk assessment techniques, potentially leading to more reliable
and resilient financial systems.

VaR models represent an evergreen area of research that is continuously demanding im-
provements and refinements. As a consequence, future research in the field could explore
several directions to further enhance the robustness and applicability of the approach pre-
sented in the current paper. A first direction could refer to model enhancements and could
involve the investigation of advanced machine learning or hybrid approaches that could bet-
ter capture the non-linearities and asymmetries which are typical of financial time series
data. A second direction of research could extend the proposed methodology to a broader
range of applications, e. g. considering other asset classes or financial markets to evaluate
its generalizability. A third area of research could consider the refinements in the dynamic
backtesting frameworks aiming at developing adaptive strategies that account for the evolv-
ing market conditions, such as regime shifts or structural breaks. Finally, research could
focus on regulatory aspects and could examine the possibility of integrating the proposed
backtesting methodology into existing regulatory frameworks, thus ensuring compatibility
with practical risk management needs. By addressing these further areas of research, future
work could contribute to the development of more accurate and versatile risk management

models, supporting both academic and industry advancements in financial econometrics.
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Table 1.
Descriptive Statistics
The table contains the descriptive statistics (mean, median, max., min., std. dev. skewness and kurtosis) for the S&P 500 index related to the following periods:

(i) January 1st 1928 to April 19th, 2023 (entire period); (ii) January 1st 1928 to December 31th, 1928 (estimation window); (iii) January 1st, 2000 to April 19th,
2023 (test window).

Statistics Entire Period Estimation Window Test Window
Mean 580.735 19.937 1900.885
Median 101.260 19.545 1439.030
Max. 4796.560 24.350 4796.560
Min. 4.400 16.950 676.530
Std. Dev 921.660 1.896 988.958
Skewness 2.188 0.450 1.207
Kurtosis 7.780 2.330 3.440




Table 2.
Estimation Results
The table contains the estimation results across the specifications of the conditional variance process: (i) GARCH(1,1) with normal errors; (iij) GARCH(1,1) with
t-student errors; (iii) GJR-GARCH (1,1) with normal errors; (iv) GJR-GARCH(1,1) with t-student errors; (v) EGARCH(1,1) with normal errors; (vi) EGARCH(1,1)
with t-student errors; (vii) PARCH(1,1) with normal errors; (viii) PARCH(1,1) with t-student errors. The mean equation follows an autoregressive process of order
1 with a constant. The estimated coefficients are related to the entire period from January 1st 1928 to April 19th, 2023. *, ** *** jndicate the statistical
significances at 10%, 5% and 1%.

Model
AR(1)- AR(1)- AR(1)- AR(1)- AR(1)- AR(1)- AR(1)- AR(1)-
Coefficients | GARCH(1,1) | GARCH(1,1) | GJR-GARCH(1,1) | GJR-GARCH(1,1) | EGARCH(1,1) EGARCH(1,1) PARCH(1,1) PARCH(1,1)
normal t-student normal t-student normal t-student normal t-student
errors errors errors errors errors errors errors errors
C(1) x 1000 0.494*** 0.605*** 0.276*** 0.464*** 0.249*** 0.430*** 0.254*** 0.426***
C(2) 0.065*** 0.057*** 0.071*** 0.063*** 0.067*** 0.060*** 0.069*** 0.061***
C(3) x 1000 0.001*** 0.001*** 0.001*** 0.001*** -0.274*** -0.233*** 0.027*** 0.066***
C(4) 0.100*** 0.089*** 0.039*** 0.031*** 0.173*** 0.154*** 0.092*** 0.085***
C(5) 0.896*** 0.908*** 0.096*** 0.109*** -0.076*** -0.084*** 0.405*** 0.558***
C(6) 0.905*** 0.907*** 0.985*** 0.988*** 0.912%** 0.921***
C(7) 1.355%** 1.127%**
t 5.753*** 6.070*** 6.067*** 6.060***




Table 3.

Descriptive statistics for the size of the hits
The table reports the descriptive statistics (mean, median, max., min., std. dev., skewness and kurtosis)
for the size of the hits, computed as the distance between the observed returns of the S&P500 and the
one step ahead forecasted Value at Risk (VaR) when a violation occurs, considering the levels of the
Value at Risk at 95% (Panel 3.1) and 99% (Panel 3.2). The descriptive statistics consider the test
window from January 1st, 2000 to April 19th, 2023.

Panel 3.1: Descriptive statistics that consider the VaR at 95%

Size of the hits
Statistics | AR(1)-GARCH(1,1) AR(1)- AR(1)- AR(1)-PARCH(1,1)
GJR-GARCH(1,1) EGARCH(1,1)
t t t t

Normal | student | Normal | student | Normal student Normal | student

Mean -0.020 -0.020 -0.019 -0.019 -0.019 -0.019 -0.019 -0.019
Median -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017 -0.017
Max. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min. -0.218 -0.219 -0.184 -0.185 -0.159 -0.163 -0.172 -0.172
Std. Dev. 0.015 0.014 0.013 0.013 0.012 0.012 0.012 0.012
Skewness | -3.114 -3.071 -2.558 -2.556 -2.175 -2.157 -2.258 -2.260
Kurtosis | 23.058 | 24.178 19.128 19.211 14.950 14.928 16.004 16.137

Panel 3.2: Descriptive statistics that consider the VaR at 99%
Size of the hits
Statistics | AR(1)-GARCH(1,1) AR(1)- AR(1)- AR(1)-PARCH(1,1)
GJR-GARCH(1,1) EGARCH(1,1)
t t t t

Normal | student | Normal | student | Normal student Normal | student

Mean -0.024 -0.024 -0.022 -0.022 -0.023 -0.023 -0.023 -0.023
Median -0.020 -0.020 -0.020 -0.020 -0.020 -0.020 -0.020 -0.020
Max. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Min. -0.235 -0.236 -0.194 -0.196 -0.165 -0.169 -0.180 -0.180
Std. Dev. 0.016 0.015 0.014 0.013 0.013 0.013 0.013 0.013
Skewness | -3.225 -3.186 -2.571 -2.572 -2.160 -2.100 -2.214 -2.218
Kurtosis | 23.837 | 25.290 19.463 19.595 15.197 14.624 15.817 15.999




Table 4.
Ljung-Box test

The table reports the Ljung Box test for the size of the hits, computed as the distance between the observed returns of the S&P500 and the one step ahead forecasted
Value at Risk (VaR) when a violation occurs, considering the levels of the VaR at 95% and 99%. The test determines whether or not the size of the hits are independent
and identically distributed; whether or not the autocorrelations for the size of the hits are non zero.We would like to fail to reject the null hypothesis. That is, we
would like to see the p-value of the test be greater than 0.05, because this means the size of the hits are independent and identically distributed and the VaR model
does not show lack of fit. The table reports the autocorrelation, the partial autocorrelation for the first ten lags of the Ljung Box test and the related p-values.

Panel 4.1: Model AR(1)-GARCH(1,1)

Normal t-student
Autocorrelation Partial Q-Stat p-value Autocorrelation Partial Q Stat p-value
Lags Autocorrelation Autocorrelation
95% 99% 95% 99% 95% 99% 95% | 99% 95% 99% 95% 99% 95% 99% 95% | 99%

1 0.296 0.366 0.296 0.366 514.32 | 785.58 | 0.000 | 0.000 | 0.245 0.304 0.245 0.304 352.16 | 540.55 | 0.000 | 0.000

2 0.363 0.425 0.302 0.336 1288.00 | 1843.90 | 0.000 | 0.000 | 0.311 0.362 0.267 0.297 921.01 | 1308.00 | 0.000 | 0.000

3 0.371 0.434 0.249 0.270 2096.50 | 2946.30 | 0.000 | 0.000 | 0.318 0.368 0.225 0.242 1514.10 | 2100.40 | 0.000 | 0.000

4 0.348 0.409 0.173 0.182 2806.20 | 3928.70 | 0.000 | 0.000 | 0.288 0.337 0.150 0.157 2000.10 | 2764.90 | 0.000 | 0.000

5 0.349 0.409 0.142 0.148 3519.10 | 4911.70 | 0.000 | 0.000 | 0.284 0.333 0.120 0.124 2474.10 | 3414.00 | 0.000 | 0.000

6 0.330 0.391 0.099 0.101 4157.90 | 5809.10 | 0.000 | 0.000 | 0.264 0.311 0.082 0.082 2884.00 | 3981.40 | 0.000 | 0.000

7 0.371 0.426 0.144 0.143 4964.50 | 6874.60 | 0.000 | 0.000 | 0.302 0.346 0.123 0.124 3419.30 | 4683.50 | 0.000 | 0.000

8 0.316 0.375 0.061 0.057 5552.00 | 7701.50 | 0.000 | 0.000 | 0.242 0.286 0.041 0.037 3762.60 | 5164.90 | 0.000 | 0.000

9 0.362 0.416 0.111 0.108 6320.80 | 8717.00 | 0.000 | 0.000 | 0.294 0.335 0.100 0.099 4269.80 | 5825.60 | 0.000 | 0.000

10 0.328 0.381 0.061 0.051 6953.90 | 9568.50 | 0.000 | 0.000 | 0.256 0.296 0.050 0.043 4655.20 | 6338.70 | 0.000 | 0.000




Panel 4.2: Model AR(1)- GJR-GARCH(1,1)

Normal t-student
Autocorrelation Partial Q-Stat p-value Autocorrelation Partial Q Stat p-value
Lags Autocorrelation Autocorrelation

95% 99% 95% 99% 95% 99% 95% | 99% 95% 99% 95% 99% 95% 99% 95% | 99%
1 0.344 0.412 0.344 0.412 693.88 | 994.64 | 0.000 | 0.000 | 0.321 0.387 0.321 0.387 605.70 | 878.51 | 0.000 | 0.000
2 0.267 0.301 0.169 0.158 1112.00 | 1525.80 | 0.000 | 0.000 | 0.261 0.295 0.176 0.171 1006.00 | 1388.90 | 0.000 | 0.000
3 0.204 0.227 0.081 0.071 1356.40 | 1828.60 | 0.000 | 0.000 | 0.203 0.227 0.089 0.080 1248.00 | 1690.60 | 0.000 | 0.000
4 0.152 0.168 0.035 0.028 1492.60 | 1994.80 | 0.000 | 0.000 | 0.152 0.169 0.039 0.031 1384.40 | 1858.40 | 0.000 | 0.000
5 0.116 0.127 0.018 0.013 1571.30 | 2088.70 | 0.000 | 0.000 | 0.116 0.127 0.018 0.013 1463.00 | 1953.00 | 0.000 | 0.000
6 0.105 0.113 0.028 0.028 1635.60 | 2163.40 | 0.000 | 0.000 | 0.106 0.115 0.029 0.029 1528.60 | 2030.30 | 0.000 | 0.000
7 0.124 0.129 0.061 0.060 1725.10 | 2261.50 | 0.000 | 0.000 | 0.126 0.132 0.062 0.062 1621.50 | 2133.20 | 0.000 | 0.000
8 0.100 0.106 0.020 0.015 1783.60 | 2327.10 | 0.000 | 0.000 | 0.100 0.106 0.021 0.016 | 1679.70 | 2199.40 | 0.000 | 0.000
9 0.127 0.133 0.060 0.062 1878.40 | 2430.80 | 0.000 | 0.000 | 0.129 0.136 0.062 0.064 | 1777.90 | 2307.80 | 0.000 | 0.000
10 0.118 0.124 0.035 0.030 1960.80 | 2521.80 | 0.000 | 0.000 | 0.119 0.125 0.036 0.031 1861.10 | 2400.10 | 0.000 | 0.000




Panel 4.3: Model AR(1)-EGARCH(1,1)

Normal t-student
Autocorrelation Partial Q-Stat p-value Autocorrelation Partial Q Stat p-value
Lags Autocorrelation Autocorrelation

95% 99% 95% 99% 95% 99% 95% | 99% 95% 99% 95% 99% 95% 99% 95% | 99%
1 0.272 0.321 0.272 0.321 434.17 | 605.78 | 0.000 | 0.000 | 0.235 0.281 0.235 0.281 325.14 | 463.04 | 0.000 | 0.000
2 0.197 0.216 0.132 0.126 660.89 | 879.08 | 0.000 | 0.000 | 0.196 0.217 0.149 0.150 550.73 | 739.07 | 0.000 | 0.000
3 0.149 0.160 0.073 0.067 790.93 | 1029.90 | 0.000 | 0.000 | 0.158 0.172 0.090 0.087 696.43 | 912.34 | 0.000 | 0.000
4 0.110 0.116 0.037 0.032 861.60 | 1109.00 | 0.000 | 0.000 | 0.118 0.128 0.046 0.041 778.78 | 1008.00 | 0.000 | 0.000
5 0.085 0.087 0.023 0.018 903.57 | 1153.30 | 0.000 | 0.000 | 0.095 0.100 0.029 0.025 831.71 | 1067.00 | 0.000 | 0.000
6 0.079 0.083 0.029 0.030 939.90 | 1193.40 | 0.000 | 0.000 | 0.086 0.093 0.030 0.031 87541 | 1117.40 | 0.000 | 0.000
7 0.116 0.121 0.075 0.078 1018.90 | 1279.70 | 0.000 | 0.000 | 0.117 0.124 0.070 0.072 956.04 | 1207.30 | 0.000 | 0.000
8 0.084 0.088 0.020 0.015 1059.90 | 1325.60 | 0.000 | 0.000 | 0.082 0.087 0.020 0.016 995.58 | 1252.20 | 0.000 | 0.000
9 0.116 0.121 0.063 0.066 1138.30 | 1411.80 | 0.000 | 0.000 | 0.120 0.126 0.066 0.069 1079.50 | 1346.10 | 0.000 | 0.000
10 0.105 0.110 0.038 0.035 1203.70 | 1483.40 | 0.000 | 0.000 | 0.106 0.111 0.040 0.036 | 1145.50 | 1419.10 | 0.000 | 0.000




Panel 4.4: Model AR(1)-PARCH(1,1)

Normal t-student
Autocorrelation Partial Q-Stat p-value Autocorrelation Partial Q Stat p-value
Lags Autocorrelation Autocorrelation

95% 99% 95% 99% 95% 99% 95% | 99% 95% 99% 95% 99% 95% 99% 95% | 99%
1 0.243 0.289 0.243 0.289 346.20 | 489.48 | 0.000 | 0.000 | 0.224 0.267 0.224 0.267 293.97 | 417.18 | 0.000 | 0.000
2 0.211 0.236 0.162 0.167 608.05 | 816.35 | 0.000 | 0.000 | 0.205 0.229 0.163 0.170 541.25 | 724.67 | 0.000 | 0.000
3 0.179 0.198 0.106 0.105 796.80 | 1047.30 | 0.000 | 0.000 | 0.175 0.194 0.109 0.108 721.85 | 944.98 | 0.000 | 0.000
4 0.134 0.147 0.050 0.044 902.01 | 1173.40 | 0.000 | 0.000 | 0.131 0.143 0.053 0.047 823.29 | 1065.80 | 0.000 | 0.000
5 0.112 0.122 0.034 0.032 975.16 | 1260.50 | 0.000 | 0.000 | 0.110 0.119 0.036 0.032 894.32 | 1149.30 | 0.000 | 0.000
6 0.100 0.108 0.031 0.030 1033.40 | 1328.90 | 0.000 | 0.000 | 0.097 0.105 0.031 0.029 949.87 | 1214.20 | 0.000 | 0.000
7 0.123 0.132 0.065 0.067 1122.70 | 1430.80 | 0.000 | 0.000 | 0.122 0.129 0.065 0.066 | 1036.80 | 1312.50 | 0.000 | 0.000
8 0.088 0.095 0.018 0.014 1168.10 | 1484.00 | 0.000 | 0.000 | 0.085 0.091 0.018 0.014 | 1079.10 | 1361.60 | 0.000 | 0.000
9 0.130 0.140 0.071 0.076 1267.90 | 1598.90 | 0.000 | 0.000 | 0.127 0.136 0.070 0.074 | 1174.50 | 1470.80 | 0.000 | 0.000
10 0.113 0.119 0.038 0.033 1342.50 | 1681.90 | 0.000 | 0.000 | 0.109 0.115 0.039 0.034 | 1244.80 | 1548.40 | 0.000 | 0.000




Figure 1.
Value at Risk Estimation using the AR(1)-GARCH(1,1)
The figure reports the one step ahead forecasted Value at Risk (VaR) based on the AR(1)-GARCH(1,1)
process with Normal (Figure 1.1) and t-student (Figure 1.2) errors. The bottom axis reports the date;
whereas, the left axis reports the level of the VaR. The figures are related to the test window from
January 1st, 2000 to April 19th, 2023.

Figure 1.1
VaR Estimation Using the AR(1)-GARCH(1,1) with Normal Errors
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Figure 1.2
VaR Estimation Using the AR(1)-GARCH(1,1) with t-student Errors
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Figure 2.
Value at Risk Estimation using the AR(1)-GJR-GARCH(1,1)
The figure reports the one step ahead forecasted Value at Risk (VaR) based on the AR(1)-GJR-
GARCH(1,1) process with Normal (Figure 2.1) and t-student (Figure 2.2) errors. The bottom axis
reports the date; whereas, the left axis reports the level of the VaR. The figures are related to the test
window from January 1st, 2000 to April 19th, 2023.

Figure 2.1
VaR Estimation Using the AR(1)-GJR-GARCH(1,1) with Normal Errors
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Figure 2.2
VaR Estimation Using the AR(1)-GJR-GARCH(1,1) with t-student Errors
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Figure 3.
Value at Risk Estimation using the AR(1)-EGARCH(1,1)
The figure reports the one step ahead forecasted Value at Risk (VaR) based on the AR(1)-EGARCH(1,1)
process with Normal (Figure 3.1) and t-student (Figure 3.2) errors. The bottom axis reports the date;
whereas, the left axis reports the level of the VaR. The figures are related to the test window from
January 1st, 2000 to April 19th, 2023.

Figure 3.1
VaR Estimation Using the AR(1)-EGARCH(1,1) with Normal Errors
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Figure 3.2
VaR Estimation Using the AR(1)-EGARCH(1,1) with t-student Errors
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Figure 4.
Value at Risk Estimation using the AR(1)-PARCH(1,1)
The figure reports the one step ahead forecasted Value at Risk (VaR) based on the AR(1)-PARCH(1,1)
process with Normal (Figure 4.1) and t-student (Figure 4.2) errors. The bottom axis reports the date;
whereas, the left axis reports the level of the VaR. The figures are related to the test window from
January 1st, 2000 to April 19th) 2023.

Figure 4.1
VaR Estimation Using the AR(1)-PARCH(1,1) with Normal Errors
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Figure 4.2
VaR Estimation Using the AR(1)-PARCH(1,1) with t-student Errors
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