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Abstract

The paper proposes a novel statistical methodology for backtesting Value-at-Risk (VaR)

models. The technique relies on the Ljung-Box test for the size of the hits, computed

as the distance between the observed returns and the one step ahead forecasted VaR,

when a violation occurs. The test determines whether or not the size of the hits are

independent and identically distributed; whether or not the model shows lack of �t.

The empirical analysis is applied to the S&P500 index, considering the levels of the

VaR at 95% and 99%.
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1. Introduction

The Value-at-Risk (VaR) which measures the quantile of the predicted distribution of gains

and losses over a target horizon, constitutes the most popular measure of risk. Consequently,

regulatory authorities need to put adequate ex-post techniques, validating or not the amount

of risk taken by �nancial institutions. The standard assessment method of VaR consists in

backtesting procedures. Jorion (2007) de�nes a backtesting procedure as a formal statistical

framework that consists in verifying if actual trading losses are in line with projected losses.

This procedure involves a comparison of model-generated VaR forecasts with actual returns

and generally relies on testing over VaR violations (also called the Hits). A hit is said to

occur when ex-post portfolio returns are lower than VaR forecasts.

Christo�ersen (1998) points out that the puzzle of determining the accuracy of a VaR

model can be reduced to the problem of determining whether the hit sequence satis�es two

properties, namely the unconditional coverage property and the independence property. The

hypothesis of unconditional coverage means that the expected frequency of observed viola-

tions is equal to α%. If the unconditional probability of violation is signi�cantly higher

than α%, it means that VaR model understates the portfolio's actual level of risk. The

independence property means that if the model of VaR calculation is valid, then violations

must be distributed independently. Campbell (2007) points out how the unconditional cov-

erage property places a restriction on how often VaR violations may occur; whereas, the

independence property restricts the ways in which these violations may occur.

In line with the conventional wisdom, this paper proposes a novel statistical procedure for

backtesting VaR models. The technique relies on the Ljung-Box test for the size of the hits,

computed as the distance between the observed returns and the one step ahead forecasted

VaR, when a violation occurs. The test determines whether or not the size of the hits are

independent and identically distributed; whether or not the autocorrelations for the size of

the hits are non zero. The null hypothesis is the data are independently distributed. If the

p-value of the test is greater than a certain threshold, it means that the model does not show
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lack of �t. The analysis is applied to the Standard & Poor's 500 index, considering the level

of the VaR at 95% and 99%.

The paper is organized as follows. In section 2, it is reported an overview of the litera-

ture. Section 3 presents the statistical methodology for backtesting VaR models. Section 4

discusses the data and reports the descriptive statistics that supports the empirical analysis.

In section 5, there is a discussion of the econometric models for one step ahead forecasting

the VaR. Section 6 realizes an empirical application using the daily data of the S&P500

index. Finally, the last section concludes.

2. An Overview of Literature

Campbell (2007) proposes a survey of various tests on independence and unconditional cov-

erage hypotheses for backtesting VaR models. Escanciano and Olmo (2010) show how the

standard unconditional and independence backtesting procedures to assess VaR models in

out-of-sample composite environments can be misleading. These tests do not consider the

impact of estimation risk and therefore may use wrong critical values to assess market risk.

Another streamline of the literature uses the statistical properties of the duration between

two consecutive hits. The idea is that if the one-period ahead VaR is correctly speci�ed

for a coverage rate α, the durations between two consecutive hits must have a geometric

distribution with a success probability equal to α%. Christo�ersen and Pelletier (2004)

propose a test of independence. The idea behind the duration-based backtesting test consists

in specifying a duration distribution that nests the geometric distribution and allows for

duration dependence, so that the independence hypothesis can be tested by means of simple

likelihood ratio (LR) tests. As pointed out by Haas (2007), this backtesting procedure sounds

very interesting. It must be note that one have to specify a particular distribution under
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the alternative hypothesis. Pelletier and Wei (2016) propose the geometric-VaR test which

utilizes the duration between the violations of VaR as well as the value of VaR.

Candelon et al. (2011) propose a new duration-based backtesting procedure for VaR

forecasts. This analysis also relies on the GMM test framework proposed by Bontemps

(2006) to test for the distributional assumption (i.e. the geometric distribution) and it is

applied to the case of the VaR forecasts validity. The statistical technique tackles most of

the drawbacks usually associated to duration based back-testing procedures. Lopez (1999)

proposes the loss function evaluation method that is not a hypothesis-testing framework, but

rather assigns to VaR estimates a numerical score that re�ects speci�c regulatory concerns.

3. The methodology

As noted by the Basle Committee on Banking Supervision (1996), the magnitude as well

as the number of exceptions, computed as the distance between the observed returns (rt)

and the one step ahead forecasted VaR, at the con�dence level 0 ≤ α ≤ 1 (V aRα
t ) when a

violation occurs, are a matter of regulatory concern.

This section proposes the Ljung-Box test (Ljung and Box 1978) for accepting or rejecting

the VaR models, based on the size of the hits (S) at time t:

St =















rt − V aRα
t rt ≤ V aRα

t

0 rt > V aRα
t

. (1)

The test determines whether or not the size of the hits are independent and identically dis-

tributed; whether or not the autocorrelations for the size of the hits are non zero. Therefore,

the null hypothesis (H0) is the data are independently distributed; with, the alternative

hypothesis (Ha) being the data are not independently distributed. The null hypothesis also

implies that the model does not show lack of �t.
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The test statistic is:

Q = n (n+ 2)
h

∑

k=1

ρ̂2k
n− k

, (2)

where n is the sample size, ρ̂k is the sample autocorrelation at lag k of the quantity

St, and h is the number of lags being tested. Under the null hypothesis, the statistic Q

asymptotically follows a χ2
(h). For signi�cance level δ, the critical region for rejection of the

hypothesis of randomness is:

Q > χ2
1−δ,h (3)

where, χ2
1−δ,h is the (1− δ) − quantile of the chi-squared distribution with h degrees of

freedom. We would like to fail to reject the null hypothesis. That is, we would like to see

the p-value of the test be greater than a certain threshold, because this means the size of

the hits are independent and identically distributed and the VaR model does not show lack

of �t.

4. Data and descriptive statistics

The empirical analysis is applied to the close prices of the Standard & Poor's 500 (S&P500)

index, measured in US Dollars. The prices are transformed into returns by taking logarithmic

di�erences of the closing daily prices. The analysis relies on daily data for the period from

January 1st, 1928 through April 19th, 2023. Therefore, the sample covers the recent years

of turmoil. The entire data period is divided into an estimation window (January 1st, 1928

to December 31, 2008) and a test window (January 1st, 2000 to April 19th, 2023). Thus,

the empirical analysis works with 23938 observations and generates 5861 out-of-sample VaR

forecasts, at 95% and 99%.

[Please Insert Table 1 around here]
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Table 1 reports the descriptive statistics for the close prices of the S&P 500 index. From

January 1st, 1928 to April 19th, 2023, the S&P 500 index respectively reports an average

value of 580.735 USD and a median value of 101.260 USD, reaching a maximum value of

4796.560 USD on December 31st, 2021. In particular, during the estimation window, the

unconditional mean for the S&P 500 is equal to 19.937 with a standard deviation of 1.896

and a level of skewness equals to 0.450; whereas, during the test window, the unconditional

mean for the close prices of the S&P 500 index is equal to 1900.885, with a standard deviation

of 988.958.

On October 19th, 1987, the S&P 500 registers its largest daily percentage loss, falling

20.47 percent. The one-day crash is known as "Black Monday�. Despite the losses, the S&P

500 still closed positive for the year. The S&P 500 index reaches an all-time intraday high of

1552.87 USD, on March 24th, 2000, during the dot-com bubble. On October 9th, 2007, the

index closes at a record high of 1565.15 USD, the highest close prior to the �nancial crisis of

2007�2008. Two days later, the index hits an intraday record high of 1576.09 USD. It did not

regain this closing level until March 28th, 2013. On February 5th, 2018, after months of low

volatility, the S&P 500 registers a new largest daily point loss of 113.19 points, equivalent

to more than 4%. Three days later, the index su�ered another heavy loss of nearly the same

amount.

On October 13th, 2008, the S&P 500 marks its best daily percentage gain, rising 11.58

percent. It also registers its then-largest single-day point increase of 104.13 points. While on

pace for the worst December performance since the Great Depression, the S&P 500 registers

a new largest daily point gain of 116.60 points on December 26th, 2018, which translates to

roughly 5% on the index. On February 19th, 2020, the S&P 500 index reached its highest

point in the bull market that started from the low point on March 9th, 2009, closing at

3386.15 USD.

The S&P 500 index su�ered its worst daily decline since 1987's Black Monday, falling 9.5

percent on March 16th, 2020, as a result of anxiety about the coronavirus pandemic. The
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decline of more than 20% since its peak, only 16 trading days earlier, signaled the start of a

bear market closing at 2,480.64 USD. On August 18th, 2020, the S&P 500 index closed at a

record high of 3389.78 USD amid the ongoing COVID-19 pandemic in the United States.

5. The econometric models

This section proposes the econometric models for one step ahead forecasting the VaR, at the

signi�cance levels of 95% and 99%. The natural logarithmic variations of the close prices, at

time t can be computed in the following way:

△pt =

(

pt − pt−1

pt−1

)

≃ log

(

pt

pt−1

)

= c (1) + c (2)△pt−1 + εt, (4)

where, c (1) is the coe�cient of the mean equation that describes the evolution of the

daily close prices, at time t; c (2) is the autoregressive component of the mean equation

and ε is the residual component at time t. This section proposes four di�erent speci�cations

of the conditional variance process (σ2) at time t, with normal and student t distributions

of the errors. Therefore, we have the following models: GARCH(1,1), GJR-GARCH(1,1),

EGARCH(1,1) and PARCH(1,1).

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model was

introduced by Bollerslev (1986) and relies on the following speci�cation:

GARCH (1, 1) : σ2
t = c (3) + c (4) · ε2t−1 + c (5) · σ2

t−1, (5)

where, c (3) is the long term component of the conditional variance; c (4) depicts the

in�uence of the squared residuals at time t − 1 and c (5) depicts the persistence of the

conditional variance.

The second model is the GJR-GARCH by Glosten et al. (1993). The generalized speci-

�cation for the conditional variance is given by:
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GJR−GARCH (1, 1) : σ2
t = c (3) + c (4) · ε2t−1 + c (5) · ε2t−1 · (εt−1 < 0) + c (6) · σ2

t−1. (6)

In this model, good news and bad news (εt−1 < 0) have di�erential e�ects on the con-

ditional variance. Good news has an impact of c (4), while bad news has an impact of

c (4)+ c (5). If c (5) > 0, bad news increases volatility, and we say that there is a leverage ef-

fect. If c (5) ̸= 0, the news impact is asymmetric. The coe�cient c (6) depicts the persistence

of the conditional variance.

The third model is the Exponential GARCH proposed by Nelson (1991). The speci�cation

for the conditional variance is:

EGARCH (1, 1) : log
(

σ2
t

)

= c (3) + c (4) · abs





εt−1
√

σ2
t−1



+ c (5) ·
εt−1

√

σ2
t−1

+ c (6) · log
(

σ2
t−1

)

. (7)

Note that the left-hand side is the logarithm of the conditional variance. This implies that

the leverage e�ect is exponential, rather than quadratic and that forecasts of the conditional

variance are guaranteed to be non-negative. The presence of leverage e�ects can be tested

by the hypothesis that c (5) < 0. The impact is asymmetric if c (5) ̸= 0. Since log σ2 may be

negative, there are no sign restrictions for the parameters. The coe�cient c (6) depicts the

persistence of the conditional variance.

Taylor (1986) and Schwert (1989) introduced the standard deviation GARCH model,

where the standard deviation is modeled rather than the variance. This model, along with

several other models, is generalized in Ding et al. (1993), with the Power ARCH speci�cation.

In the Power ARCH model, the power parameter of the standard deviation can be estimated

rather than imposed. Therefore, the following expression is derived.
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PARCH (1, 1) :

(

√

σ2
t

)c(7)

= c (3)+c (4) · (abs (εt−1)− c (5) · εt−1)
c(7)+c (6) ·

(

√

σ2
t−1

)c(7)

, (8)

where c (7) > 0, and the absolute value of c (5) is smaller or equal than 1. The coe�cient

c (6) depicts the persistence of the conditional variance.

6. Empirical Results

The estimation results rely on the Broyden�Fletcher�Goldfarb�Shanno (BFGS) algorithm

(Roger 1987) that is an iterative method for solving unconstrained nonlinear optimization

problems. It belongs to quasi-Newton methods and seeks a stationary point of a function,

reachable when the gradient is zero. The optimization algorithm begins at an initial estimate

for the optimal values and proceeds iteratively to get better estimates at each stage, till

when there is a convergence for �nding the solutions. For simplicity, the maximum number

of iterations is �xed to n. 5,000 and the convergence rate to 1e-06. The step method is

based on the Levenberg-Marquardt algorithm (Levenberg 1944; Marquardt 1963) that is

more robust than the Gauss-Newton algorithm, since it allows to derive solutions even if

the algorithm starts very far o from the �nal minimum. In cases with multiple minima, the

algorithm converges to the global minimum only if the initial guess is already somewhat

close to the �nal solution. The estimation procedure also accommodates the Huber-White

estimator (Huber 1967; White 1980), that allows to derive the variance/covariance matrix

considering the heteroscedasticity of the residuals.

[Please Insert Table 2 around here]

Table 2 contains the estimation results across the speci�cations of the conditional vari-

ance process: (i) GARCH(1,1) with normal errors; (ii) GARCH(1,1) with t-student er-
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rors; (iii) GJR-GARCH(1,1) with normal errors; (iv) GJR-GARCH(1,1) with t-student er-

rors; (v) EGARCH(1,1) with normal errors; (vi) EGARCH(1,1) with t-student errors; (vii)

PARCH(1,1) with normal errors; (viii) PARCH(1,1) with t-student errors. The mean equa-

tion follows an autoregressive process of order 1 with a constant. The estimated coe�cients

are related to the entire period from January 1st 1928 to April 19th, 2023.

All the coe�cients of the models are statistically signi�cant at the level of 1%. The esti-

mated coe�cient c (2) that depicts the autoregressive component of the mean equation ranges

from 0.06, for the AR(1)-EGARCH(1,1) with t-student errors, to 0.071 for the AR(1)-GJR-

GARCH(1,1) with normal errors. Across speci�cations, the estimated coe�cients that depict

the persistence of the conditional variance range from 0.896, for the AR(1)-GARCH(1,1) with

normal errors, to 0.988 for the AR(1)-EGARCH(1,1) with t-student errors.

[Please Insert Figure 1 and Figure 2 around here]

The coe�cients that determine the conditional volatility are also estimated for the period

between January 1st, 1928 and December 31th, 1928 and taken into consideration for the

period from January 1st, 2000 to April 19th, 20231, with the aim to compute the one step

ahead forecasted VaR. Figure 1 reports its evolution at the signi�cance levels of 95% and 99%,

based on the AR(1)-GARCH(1,1) process with normal (Figure 1.1) and t-student (Figure

1.2) errors. The mean and the median of the one step ahead forecasted VaR at 95% with

normal and t-student errors are respectively equal to 0.020 and 0.018; whereas, the mean

and the median of the one step ahead forecasted VaR at 99% with normal and t-student

errors are respectively equal to 0.024 and 0.021.

The evolution of the one step ahead forecasted VaR at the signi�cance levels of 95% and

99%, based on the AR(1)-GJR-GARCH(1,1) model, is reported in Figure 2. The mean and

the median for the one step ahead forecasted VaR at 95% with normal and t-student errors

1The one-step-ahead forecast is a technique used in time series forecasting. It is used to evaluate how
well a model would have done if you were forecasting for one day ahead
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are respectively equal to 0.019 and 0.017; whereas, the mean and the median for the one

step ahead forecasted VaR at 99%, with normal and t-student errors, are respectively equal

to 0.022 and 0.020.

[Please Insert Figure 3 and Figure 4 around here]

The evolution for the one step ahead forecasted VaR at the signi�cance levels of 95%

and 99% is also respectively shown for the AR(1)-EGARCH(1,1) model (Figure 3) and the

AR(1)-PARCH(1,1) process (Figure 4).

6.1 The Size Of The Hits And The Test Of Hypothesis

The size of the hits is computed as the distance between the observed returns of the S&P500

and the one step ahead forecasted Value at Risk (VaR) when a violation occurs (see equality

n. 1), considering the levels of signi�cance at 95% and 99%. Table 3 reports the descriptive

statistics for the size of the hits across the models.

[Please Insert Table 3 around here]

Considering the level of con�dence for the forecasted VaR at 95%, the AR(1)-GARCH(1,1)

model reports a mean for the size of the hits equals to -0.020 and a standard deviation of 0.015

(for normal errors) and 0.014 (for t-student errors). The mean decreases to -0.019 for the rest

of the models with a standard deviation equals to 0.013 for the AR(1)-GJR-GARCH(1,1)

model and 0.012 for the AR(1)-EGARCH(1,1) and AR(1)-PARCH(1,1) models.

The descriptive statistics for the size of the hits are also reported for the level of con-

�dence of the VaR at 99%. The mean of the size of the hits is equal to -0.024 with a
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standard deviation equals to 0.016 and 0.015 for the AR(1)-GARCH(1,1) model. The mean

decreases to -0.023 for the AR(1)-EGARCH(1,1) and for the AR(1)-PARCH(1,1) models

with a standard deviation equals to 0.013.

The size of the hits allows to evaluate the Ljung Box test. It determines whether or

not the size of the hits are independent and identically distributed; whether or not the

autocorrelations for the size of the hits are non zero.We would like to fail to reject the null

hypothesis. That is, we would like to see the p-value of the test be greater than 0.05, because

this means the size of the hits are independent and identically distributed and the VaR model

does not show lack of �t.

[Please Insert Table 4 around here]

Table 4 reports the autocorrelation, the partial autocorrelation for the �rst ten lags of the

Ljung Box test and the related p-values, across speci�cations of the conditional processes.

The results show that the VaR models reject the null hypothesis, since the p-value of the

test is smaller than 0.05, implying that the size of the hits are serially correlated and the

VaR models constructed on the conditional volatility processes show lack of �t.

7. Conclusion

This paper proposes a novel methodology for backtesting Value-at-Risk (VaR) models, rely-

ing on the Ljung-Box test to evaluate the independence and identically distributed nature

for the size of the hits. The empirical application, focused on the S&P 500 index, explores

VaR models at 95% and 99% con�dence levels across di�erent speci�cations of conditional

variance processes, including GARCH, GJR-GARCH, EGARCH, and PARCH models. The

results indicate that, while the tested models show statistical signi�cance across the various

parameters, the size of the hits often exhibits serial correlation. This suggests that the VaR
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models, despite being robust in forecasting, demonstrate a lack of �t in capturing the com-

plete distributional dynamics of returns. The persistence of this issue across the di�erent

model typologies emphasizes the need for improved statistical methodologies in the area of

VaR backtesting.

The methodology proposed in this paper suggests an alternative and a rigorous frame-

work for backtesting VaR models, o�ering a formal tool in order to identify limitations in

their predictive accuracy. This approach could help both regulatory bodies and �nancial

institutions to re�ne their risk assessment techniques, potentially leading to more reliable

and resilient �nancial systems.

VaR models represent an evergreen area of research that is continuously demanding im-

provements and re�nements. As a consequence, future research in the �eld could explore

several directions to further enhance the robustness and applicability of the approach pre-

sented in the current paper. A �rst direction could refer to model enhancements and could

involve the investigation of advanced machine learning or hybrid approaches that could bet-

ter capture the non-linearities and asymmetries which are typical of �nancial time series

data. A second direction of research could extend the proposed methodology to a broader

range of applications, e. g. considering other asset classes or �nancial markets to evaluate

its generalizability. A third area of research could consider the re�nements in the dynamic

backtesting frameworks aiming at developing adaptive strategies that account for the evolv-

ing market conditions, such as regime shifts or structural breaks. Finally, research could

focus on regulatory aspects and could examine the possibility of integrating the proposed

backtesting methodology into existing regulatory frameworks, thus ensuring compatibility

with practical risk management needs. By addressing these further areas of research, future

work could contribute to the development of more accurate and versatile risk management

models, supporting both academic and industry advancements in �nancial econometrics.
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Table 1.  

Descriptive Statistics 
The table contains the descriptive statistics (mean, median, max., min., std. dev. skewness and kurtosis) for the S&P 500 index related to the following periods: 

(i) January 1st 1928 to April 19th, 2023 (entire period); (ii) January 1st 1928 to December 31th, 1928 (estimation window); (iii) January 1st, 2000 to April 19th, 

2023 (test window). 

 

 

 

Statistics 

 

 

Entire Period 

 

 

Estimation Window 

 

 

Test Window 

 

 

Mean 

 

Median 

 

Max. 

 

Min. 

 

Std. Dev 

 

Skewness 

 

Kurtosis 

 

 

 

580.735 

 

101.260 

 

4796.560 

 

4.400 

 

921.660 

 

2.188 

 

7.780 

 

 

 

19.937 

 

19.545 

 

24.350 

 

16.950 

 

1.896 

 

0.450 

 

2.330 

 

 

 

1900.885 

 

1439.030 

 

4796.560 

 

676.530 

 

988.958 

 

1.207 

 

3.440 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. 

Estimation Results 
The table contains the estimation results across the specifications of the conditional variance process: (i) GARCH(1,1) with normal errors; (ii) GARCH(1,1) with 

t-student errors; (iii) GJR-GARCH (1,1) with normal errors; (iv) GJR-GARCH(1,1) with t-student errors; (v) EGARCH(1,1) with normal errors; (vi) EGARCH(1,1) 

with t-student errors; (vii) PARCH(1,1) with normal errors; (viii) PARCH(1,1) with t-student errors. The mean equation follows an autoregressive process of order 

1 with a constant. The estimated coefficients are related to the entire period from January 1st 1928 to April 19th, 2023. *, **, *** indicate the statistical 

significances at 10%, 5% and 1%.  

 

 

 

 

 

 

Coefficients 

 

 

 

Model 

 

AR(1)-

GARCH(1,1) 

normal  

errors 

AR(1)-

GARCH(1,1) 

t-student 

errors 

AR(1)- 

GJR-GARCH(1,1) 

normal 

errors 

AR(1)-  
GJR-GARCH(1,1) 

t-student 

errors 

AR(1)-

EGARCH(1,1) 

normal 

errors 

AR(1)-

EGARCH(1,1) 

t-student 

errors 

AR(1)-

PARCH(1,1) 

normal  

errors 

AR(1)-

PARCH(1,1) 

t-student  

errors 

 

C(1) x 1000 

 

C(2) 

 

C(3) x 1000 

 

C(4) 

 

C(5) 

 

C(6) 

 

C(7) 

 

t 

 

0.494*** 

 

0.065*** 

 

0.001*** 

 

0.100*** 

 

0.896*** 

 

 

 

 

 

 

 

0.605*** 

 

0.057*** 

 

0.001*** 

 

0.089*** 

 

0.908*** 

 

 

 

 

 

5.753*** 

 

0.276*** 

 

0.071*** 

 

0.001*** 

 

0.039*** 

 

0.096*** 

 

0.905*** 

 

 

 

 

 

0.464*** 

 

0.063*** 

 

0.001*** 

 

0.031*** 

 

0.109*** 

 

0.907*** 

 

 

 

6.070*** 

 

0.249*** 

 

0.067*** 

 

-0.274*** 

 

0.173*** 

 

-0.076*** 

 

0.985*** 

 

 

 

 

 

0.430*** 

 

0.060*** 

 

-0.233*** 

 

0.154*** 

 

-0.084*** 

 

0.988*** 

 

 

 

6.067*** 

 

0.254*** 

 

0.069*** 

 

0.027*** 

 

0.092*** 

 

0.405*** 

 

0.912*** 

 

1.355*** 

 

 

 

0.426*** 

 

0.061*** 

 

0.066*** 

 

0.085*** 

 

0.558*** 

 

0.921*** 

 

1.127*** 

 

6.060*** 

 

 



Table 3. 

Descriptive statistics for the size of the hits 
The table reports the descriptive statistics (mean, median, max., min., std. dev., skewness and kurtosis) 

for the size of the hits, computed as the distance between the observed returns of the S&P500 and the 

one step ahead forecasted Value at Risk (VaR) when a violation occurs, considering the levels of the 

Value at Risk at 95% (Panel 3.1) and 99% (Panel 3.2). The descriptive statistics consider the test 

window from January 1st, 2000 to April 19th, 2023. 

 

Panel 3.1: Descriptive statistics that consider the VaR at 95% 

Size of the hits 

 

 

Statistics 

 

 

AR(1)-GARCH(1,1) 

 

AR(1)-  
GJR-GARCH(1,1) 

 

 

AR(1)- 

EGARCH(1,1) 

 

 

AR(1)-PARCH(1,1) 

 

 

Normal 

t 

student 

 

Normal 

t 

student 

 

Normal 

t 

student 

 

Normal 

 

t 

student 

 

Mean  

 

Median 

 

Max. 

 

Min. 

 

Std. Dev. 

 

Skewness 

 

Kurtosis 

 

 

-0.020 

 

-0.017 

 

0.000 

 

-0.218 

 

0.015 

 

-3.114 

 

23.058 

 

 

-0.020 

 

-0.017 

 

0.000 

 

-0.219 

 

0.014 

 

-3.071 

 

24.178 

 

 

-0.019 

 

-0.017 

 

0.000 

 

-0.184 

 

0.013 

 

-2.558 

 

19.128 

 

 

-0.019 

 

-0.017 

 

0.000 

 

-0.185 

 

0.013 

 

-2.556 

 

19.211 

 

 

-0.019 

 

-0.017 

 

0.000 

 

-0.159 

 

0.012 

 

-2.175 

 

14.950 

 

 

-0.019 

 

-0.017 

 

0.000 

 

-0.163 

 

0.012 

 

-2.157 

 

14.928 

 

 

-0.019 

 

-0.017 

 

0.000 

 

-0.172 

 

0.012 

 

-2.258 

 

16.004 

 

 

-0.019 

 

-0.017 

 

0.000 

 

-0.172 

 

0.012 

 

-2.260 

 

16.137 

 

 
Panel 3.2: Descriptive statistics that consider the VaR at 99% 

Size of the hits 

 

 

Statistics 

 

 

AR(1)-GARCH(1,1) 

 

AR(1)-  
GJR-GARCH(1,1) 

 

 

AR(1)- 

EGARCH(1,1) 

 

 

AR(1)-PARCH(1,1) 

 

 

Normal 

t 

student 

 

Normal 

t 

student 

 

Normal 

t 

student 

 

Normal 

 

t 

student 

 

Mean  

 

Median 

 

Max. 

 

Min. 

 

Std. Dev. 

 

Skewness 

 

Kurtosis 

 

 

-0.024 

 

-0.020 

 

0.000 

 

-0.235 

 

0.016 

 

-3.225 

 

23.837 

 

 

-0.024 

 

-0.020 

 

0.000 

 

-0.236 

 

0.015 

 

-3.186 

 

25.290 

 

 

-0.022 

 

-0.020 

 

0.000 

 

-0.194 

 

0.014 

 

-2.571 

 

19.463 

 

 

-0.022 

 

-0.020 

 

0.000 

 

-0.196 

 

0.013 

 

-2.572 

 

19.595 

 

 

-0.023 

 

-0.020 

 

0.000 

 

-0.165 

 

0.013 

 

-2.160 

 

15.197 

 

 

-0.023 

 

-0.020 

 

0.000 

 

-0.169 

 

0.013 

 

-2.100 

 

14.624 

 

 

-0.023 

 

-0.020 

 

0.000 

 

-0.180 

 

0.013 

 

-2.214 

 

15.817 

 

 

-0.023 

 

-0.020 

 

0.000 

 

-0.180 

 

0.013 

 

-2.218 

 

15.999 

 

 



Table 4. 

Ljung-Box test 

 
The table reports the Ljung Box test for the size of the hits, computed as the distance between the observed returns of the S&P500 and the one step ahead forecasted 

Value at Risk (VaR) when a violation occurs, considering the levels of the VaR at 95% and 99%. The test determines whether or not the size of the hits are independent 

and identically distributed; whether or not the autocorrelations for the size of the hits are non zero.We would like to fail to reject the null hypothesis. That is, we 

would like to see the p-value of the test be greater than 0.05, because this means the size of the hits are independent and identically distributed and the VaR model 

does not show lack of fit. The table reports the autocorrelation, the partial autocorrelation for the first ten lags of the Ljung Box test and the related p-values. 

  

Panel 4.1: Model AR(1)-GARCH(1,1) 

Normal 

 

t-student 

 

 

Lags 

 

Autocorrelation Partial 

Autocorrelation 

Q-Stat p-value Autocorrelation Partial 

Autocorrelation 

Q Stat p-value 

 

95% 

 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

0.296 

 

0.363 

 

0.371 

 

0.348 

 

0.349 

 

0.330 

 

0.371 

 

0.316 

 

0.362 

 

0.328 

 

0.366 

 

0.425 

 

0.434 

 

0.409 

 

0.409 

 

0.391 

 

0.426 

 

0.375 

 

0.416 

 

0.381 

 

0.296 

 

0.302 

 

0.249 

 

0.173 

 

0.142 

 

0.099 

 

0.144 

 

0.061 

 

0.111 

 

0.061 

 

0.366 

 

0.336 

 

0.270 

 

0.182 

 

0.148 

 

0.101 

 

0.143 

 

0.057 

 

0.108 

 

0.051 

 

514.32 

 

1288.00 

 

2096.50 

 

2806.20 

 

3519.10 

 

4157.90 

 

4964.50 

 

5552.00 

 

6320.80 

 

6953.90 

 

785.58 

 

1843.90 

 

2946.30 

 

3928.70 

 

4911.70 

 

5809.10 

 

6874.60 

 

7701.50 

 

8717.00 

 

9568.50 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.245 

 

0.311 

 

0.318 

 

0.288 

 

0.284 

 

0.264 

 

0.302 

 

0.242 

 

0.294 

 

0.256 

 

0.304 

 

0.362 

 

0.368 

 

0.337 

 

0.333 

 

0.311 

 

0.346 

 

0.286 

 

0.335 

 

0.296 

 

0.245 

 

0.267 

 

0.225 

 

0.150 

 

0.120 

 

0.082 

 

0.123 

 

0.041 

 

0.100 

 

0.050 

 

0.304 

 

0.297 

 

0.242 

 

0.157 

 

0.124 

 

0.082 

 

0.124 

 

0.037 

 

0.099 

 

0.043 

 

352.16 

 

921.01 

 

1514.10 

 

2000.10 

 

2474.10 

 

2884.00 

 

3419.30 

 

3762.60 

 

4269.80 

 

4655.20 

 

540.55 

 

1308.00 

 

2100.40 

 

2764.90 

 

3414.00 

 

3981.40 

 

4683.50 

 

5164.90 

 

5825.60 

 

6338.70 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

 



 

Panel 4.2: Model AR(1)- GJR-GARCH(1,1) 

 

Normal 

 

t-student 

 

 

Lags 

 

Autocorrelation Partial 

Autocorrelation 

Q-Stat p-value Autocorrelation Partial 

Autocorrelation 

Q Stat p-value 

 

95% 

 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

0.344 

 

0.267 

 

0.204 

 

0.152 

 

0.116 

 

0.105 

 

0.124 

 

0.100 

 

0.127 

 

0.118 

 

0.412 

 

0.301 

 

0.227 

 

0.168 

 

0.127 

 

0.113 

 

0.129 

 

0.106 

 

0.133 

 

0.124 

 

0.344 

 

0.169 

 

0.081 

 

0.035 

 

0.018 

 

0.028 

 

0.061 

 

0.020 

 

0.060 

 

0.035 

 

0.412 

 

0.158 

 

0.071 

 

0.028 

 

0.013 

 

0.028 

 

0.060 

 

0.015 

 

0.062 

 

0.030 

 

693.88 

 

1112.00 

 

1356.40 

 

1492.60 

 

1571.30 

 

1635.60 

 

1725.10 

 

1783.60 

 

1878.40 

 

1960.80 

 

994.64 

 

1525.80 

 

1828.60 

 

1994.80 

 

2088.70 

 

2163.40 

 

2261.50 

 

2327.10 

 

2430.80 

 

2521.80 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.321 

 

0.261 

 

0.203 

 

0.152 

 

0.116 

 

0.106 

 

0.126 

 

0.100 

 

0.129 

 

0.119 

 

0.387 

 

0.295 

 

0.227 

 

0.169 

 

0.127 

 

0.115 

 

0.132 

 

0.106 

 

0.136 

 

0.125 

 

0.321 

 

0.176 

 

0.089 

 

0.039 

 

0.018 

 

0.029 

 

0.062 

 

0.021 

 

0.062 

 

0.036 

 

0.387 

 

0.171 

 

0.080 

 

0.031 

 

0.013 

 

0.029 

 

0.062 

 

0.016 

 

0.064 

 

0.031 

 

605.70 

 

1006.00 

 

1248.00 

 

1384.40 

 

1463.00 

 

1528.60 

 

1621.50 

 

1679.70 

 

1777.90 

 

1861.10 

 

878.51 

 

1388.90 

 

1690.60 

 

1858.40 

 

1953.00 

 

2030.30 

 

2133.20 

 

2199.40 

 

2307.80 

 

2400.10 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

 

 

 

 

 

 

 

 



Panel 4.3: Model AR(1)-EGARCH(1,1) 

 

Normal 

 

t-student 

 

 

Lags 

 

Autocorrelation Partial 

Autocorrelation 

Q-Stat p-value Autocorrelation Partial 

Autocorrelation 

Q Stat p-value 

 

95% 

 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

0.272 

 

0.197 

 

0.149 

 

0.110 

 

0.085 

 

0.079 

 

0.116 

 

0.084 

 

0.116 

 

0.105 

 

0.321 

 

0.216 

 

0.160 

 

0.116 

 

0.087 

 

0.083 

 

0.121 

 

0.088 

 

0.121 

 

0.110 

 

0.272 

 

0.132 

 

0.073 

 

0.037 

 

0.023 

 

0.029 

 

0.075 

 

0.020 

 

0.063 

 

0.038 

 

0.321 

 

0.126 

 

0.067 

 

0.032 

 

0.018 

 

0.030 

 

0.078 

 

0.015 

 

0.066 

 

0.035 

 

434.17 

 

660.89 

 

790.93 

 

861.60 

 

903.57 

 

939.90 

 

1018.90 

 

1059.90 

 

1138.30 

 

1203.70 

 

605.78 

 

879.08 

 

1029.90 

 

1109.00 

 

1153.30 

 

1193.40 

 

1279.70 

 

1325.60 

 

1411.80 

 

1483.40 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.235 

 

0.196 

 

0.158 

 

0.118 

 

0.095 

 

0.086 

 

0.117 

 

0.082 

 

0.120 

 

0.106 

 

0.281 

 

0.217 

 

0.172 

 

0.128 

 

0.100 

 

0.093 

 

0.124 

 

0.087 

 

0.126 

 

0.111 

 

0.235 

 

0.149 

 

0.090 

 

0.046 

 

0.029 

 

0.030 

 

0.070 

 

0.020 

 

0.066 

 

0.040 

 

0.281 

 

0.150 

 

0.087 

 

0.041 

 

0.025 

 

0.031 

 

0.072 

 

0.016 

 

0.069 

 

0.036 

 

325.14 

 

550.73 

 

696.43 

 

778.78 

 

831.71 

 

875.41 

 

956.04 

 

995.58 

 

1079.50 

 

1145.50 

 

463.04 

 

739.07 

 

912.34 

 

1008.00 

 

1067.00 

 

1117.40 

 

1207.30 

 

1252.20 

 

1346.10 

 

1419.10 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

 

 

 

 

 

 

 

 

 



Panel 4.4: Model AR(1)-PARCH(1,1) 

 

Normal 

 

t-student 

 

 

Lags 

 

Autocorrelation Partial 

Autocorrelation 

Q-Stat p-value Autocorrelation Partial 

Autocorrelation 

Q Stat p-value 

 

95% 

 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

 

95% 

 

99% 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

0.243 

 

0.211 

 

0.179 

 

0.134 

 

0.112 

 

0.100 

 

0.123 

 

0.088 

 

0.130 

 

0.113 

 

0.289 

 

0.236 

 

0.198 

 

0.147 

 

0.122 

 

0.108 

 

0.132 

 

0.095 

 

0.140 

 

0.119 

 

0.243 

 

0.162 

 

0.106 

 

0.050 

 

0.034 

 

0.031 

 

0.065 

 

0.018 

 

0.071 

 

0.038 

 

0.289 

 

0.167 

 

0.105 

 

0.044 

 

0.032 

 

0.030 

 

0.067 

 

0.014 

 

0.076 

 

0.033 

 

346.20 

 

608.05 

 

796.80 

 

902.01 

 

975.16 

 

1033.40 

 

1122.70 

 

1168.10 

 

1267.90 

 

1342.50 

 

489.48 

 

816.35 

 

1047.30 

 

1173.40 

 

1260.50 

 

1328.90 

 

1430.80 

 

1484.00 

 

1598.90 

 

1681.90 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.224 

 

0.205 

 

0.175 

 

0.131 

 

0.110 

 

0.097 

 

0.122 

 

0.085 

 

0.127 

 

0.109 

 

0.267 

 

0.229 

 

0.194 

 

0.143 

 

0.119 

 

0.105 

 

0.129 

 

0.091 

 

0.136 

 

0.115 

 

0.224 

 

0.163 

 

0.109 

 

0.053 

 

0.036 

 

0.031 

 

0.065 

 

0.018 

 

0.070 

 

0.039 

 

0.267 

 

0.170 

 

0.108 

 

0.047 

 

0.032 

 

0.029 

 

0.066 

 

0.014 

 

0.074 

 

0.034 

 

293.97 

 

541.25 

 

721.85 

 

823.29 

 

894.32 

 

949.87 

 

1036.80 

 

1079.10 

 

1174.50 

 

1244.80 

 

417.18 

 

724.67 

 

944.98 

 

1065.80 

 

1149.30 

 

1214.20 

 

1312.50 

 

1361.60 

 

1470.80 

 

1548.40 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

0.000 

 

 

 

 

 

 

 



Figure 1. 

Value at Risk Estimation using the AR(1)-GARCH(1,1) 
The figure reports the one step ahead forecasted Value at Risk (VaR) based on the AR(1)-GARCH(1,1) 

process with Normal (Figure 1.1) and t-student (Figure 1.2) errors. The bottom axis reports the date; 

whereas, the left axis reports the level of the VaR. The figures are related to the test window from 

January 1st, 2000 to April 19th, 2023. 

   

Figure 1.1 

VaR Estimation Using the AR(1)-GARCH(1,1) with Normal Errors 

  

 

Figure 1.2 

VaR Estimation Using the AR(1)-GARCH(1,1) with t-student Errors 

 

 
 

 



Figure 2. 

Value at Risk Estimation using the AR(1)-GJR-GARCH(1,1) 
The figure reports the one step ahead forecasted Value at Risk (VaR) based on the AR(1)-GJR-

GARCH(1,1) process with Normal (Figure 2.1) and t-student (Figure 2.2) errors. The bottom axis 

reports the date; whereas, the left axis reports the level of the VaR. The figures are related to the test 

window from January 1st, 2000 to April 19th, 2023. 

 

Figure 2.1 

VaR Estimation Using the AR(1)-GJR-GARCH(1,1) with Normal Errors 

 

 

Figure 2.2 

VaR Estimation Using the AR(1)-GJR-GARCH(1,1) with t-student Errors 

 

 

 

 

 



Figure 3. 

Value at Risk Estimation using the AR(1)-EGARCH(1,1) 
The figure reports the one step ahead forecasted Value at Risk (VaR) based on the AR(1)-EGARCH(1,1) 

process with Normal (Figure 3.1) and t-student (Figure 3.2) errors. The bottom axis reports the date; 

whereas, the left axis reports the level of the VaR. The figures are related to the test window from 

January 1st, 2000 to April 19th, 2023. 

 

Figure 3.1 

VaR Estimation Using the AR(1)-EGARCH(1,1) with Normal Errors 

 

  

 

Figure 3.2 

VaR Estimation Using the AR(1)-EGARCH(1,1) with t-student Errors 

 

 

 

 



Figure 4. 

Value at Risk Estimation using the AR(1)-PARCH(1,1) 
The figure reports the one step ahead forecasted Value at Risk (VaR) based on the AR(1)-PARCH(1,1) 

process with Normal (Figure 4.1) and t-student (Figure 4.2) errors. The bottom axis reports the date; 

whereas, the left axis reports the level of the VaR. The figures are related to the test window from 

January 1st, 2000 to April 19th, 2023. 

 

Figure 4.1 

VaR Estimation Using the AR(1)-PARCH(1,1) with Normal Errors 

 

 

 

Figure 4.2 

VaR Estimation Using the AR(1)-PARCH(1,1) with t-student Errors 
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