

Increasing-Decreasing - 2025

Question 1: 2025 - Set 1 - Q22 - 2 M -

Increasing-Decreasing

Q : Find the values of a for which $f(x) = x^2 - 2ax + b$ is an increasing function for $x > 0$.

Question 2: 2025 - Set 2 - Q10 - 1 M -

Increasing-Decreasing

Q : The function $f(x) = x^2 - 4x + 6$ is increasing in the interval

- (A) $(0, 2)$
- (B) $(-\infty, 2]$
- (C) $[1, 2]$
- (D) $[2, \infty)$

Question 3: 2025 - Set 2 - Q21 - 2 M -

Increasing-Decreasing

Q : Find the values of a for which $f(x) = \sin x - ax + b$ is increasing on \mathbb{R} .

Question 4: 2025 - Set 3 - Q11 - 1 M -

Increasing-Decreasing

Q : If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as $f(x) = 2x - \sin x$, then f is:

- (A) a decreasing function
- (B) an increasing function
- (C) maximum at $x = \pi/2$
- (D) maximum at $x = 0$

Question 5: 2025 - Set 3 - Q26(a) - 3 M -

Increasing-Decreasing

Q : Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = 4x^3 - 5$, for all $x \in \mathbb{R}$, is one-one and onto.

Increasing-Decreasing - 2025

Question 1: 2025 - Set 1 - Q22 - 2 M -

Increasing-Decreasing

Q : Find the values of a for which $f(x) = x^2 - 2ax + b$ is an increasing function for $x > 0$.

Question 2: 2025 - Set 2 - Q10 - 1 M -

Increasing-Decreasing

Q : The function $f(x) = x^2 - 4x + 6$ is increasing in the interval

- (A) $(0, 2)$
- (B) $(-\infty, 2]$
- (C) $[1, 2]$
- (D) $[2, \infty)$

Question 3: 2025 - Set 2 - Q21 - 2 M -

Increasing-Decreasing

Q : Find the values of a for which $f(x) = \sin x - ax + b$ is increasing on \mathbb{R} .

Question 4: 2025 - Set 3 - Q11 - 1 M -

Increasing-Decreasing

Q : If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as $f(x) = 2x - \sin x$, then f is:

- (A) a decreasing function
- (B) an increasing function
- (C) maximum at $x = \pi/2$
- (D) maximum at $x = 0$

Question 5: 2025 - Set 3 - Q26(a) - 3 M -

Increasing-Decreasing

Q : Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = 4x^3 - 5$, for all $x \in \mathbb{R}$, is one-one and onto.